Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Daniel E. Lynch

School of Science and the Environment, Coventry University, Coventry CV1 5FB, England

Correspondence e-mail:
apx106@coventry.ac.uk

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
H -atom completeness 98%
Disorder in solvent or counterion
R factor $=0.059$
$w R$ factor $=0.206$
Data-to-parameter ratio $=12.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Tris(2-ethylammonio)amine-4-nitrobenzoatewater (1/3/2)

The asymmetric unit of the title compound, $\mathrm{C}_{6} \mathrm{H}_{21} \mathrm{~N}_{4}{ }^{3+} \cdot 3 \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}{ }^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, consists of two triply protonated base molecules, six benzoate anions and four water molecules, one of which is unequally disordered across two adjacent sites in an extensive hydrogen-bonded network.

Comment

Tris(2-aminoethyl)amine has been used extensively as a tripod ligand for the coordination of metal centres, and numerous structures exist containing coordinated tris(2-aminoethyl)amine. However, a search of the April 2003 release of the Cambridge Structural Database (Allen, 2002) reveals that there are only ten structures where tris(2-aminoethyl)amine has been used as an organic base for which all three amine groups are protonated. None of these structures contains an organic acid. As part of a series of studies investigating the organic salt structures of multi-amine-containing aliphatic compounds with benzoic acid derivatives, we characterized the structure of the title compound, (I).

Interestingly the asymmetric unit of (I) consists of two triply protonated base molecules, six benzoate anions and four water molecules, one of which is unequally disordered across two adjacent sites (occupancies of O 41 W and O 42 W are 60 and 40%, respectively). Although the hydrogen-bonding network (Table 1) is extensive, the placement of molecules in the lattice is unexpectedly simple. The two bases, both adopting a tripod conformation and both facing in the same direction, line up along the b cell direction. Anions B, C, D and F, all benzoates, stack in the same orientation also along the b cell direction. The two remaining benzoates, anions G and H, lie perpendicular to the stacked benzoates and down the centre of the unit cell, forming what could be loosely described as a plane at $z=\frac{1}{2}$. The water molecules are then dispersed between the ions in suitable voids. Although H atoms were not located for the two components of $\mathrm{O} 4 W$, the O 41 W and O 42 W atoms are 2.639 (6) and 2.810 (6) A, respectively, from $\mathrm{O} 11 H$ and 3.400 (6) and 3.342 (6) \AA from the back of $\mathrm{N} 10 E$, suggesting their involvement in hydrogen bonds.

Experimental

1:3 Molar amounts of tris(2-aminoethyl)amine and 4-nitrobenzoic acid were refluxed in ethanol for 20 min . Total evaporation of the solvent gave yellow prisms of (I) (m.p. 457 K).

Received 3 July 2003 Accepted 14 July 2003 Online 24 July 2003

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{21} \mathrm{~N}_{4}{ }^{3+} \cdot 3 \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}{ }^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$Z=4$
$M_{r}=683.647$	$D_{x}=1.415 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=14.095$ (1) A	Cell parameters from 25
$b=14.697$ (1) \AA 。	reflections
$c=17.1308$ (7) A	$\theta=6-14^{\circ}$
$\alpha=103.758$ (5) ${ }^{\circ}$	$\mu=0.12 \mathrm{~mm}^{-1}$
$\beta=99.715$ (6) ${ }^{\circ}$	$T=298$ (2) K
$\gamma=105.898$ (7) ${ }^{\circ}$	Prism, yellow
$V=3209.5(3) \AA^{3}$	$0.60 \times 0.50 \times 0.50 \mathrm{~mm}$
Data collection	
Enraf-Nonius CAD-4	$R_{\text {int }}=0.011$
diffractometer	$\theta_{\text {max }}=25.0^{\circ}$
$2 \theta / \omega$ scans	$h=0 \rightarrow 16$
Absorption correction: ψ scan	$k=-17 \rightarrow 16$
(Xtal3.2; Hall et al., 1992)	$l=-20 \rightarrow 20$
$T_{\text {min }}=0.952, T_{\text {max }}=0.977$	3 standard reflections
11786 measured reflections	every 200 reflections
11286 independent reflections	intensity decay: 15%
5646 reflections with $I>2 \sigma(I)$	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.206$
$S=1.03$
11286 reflections
922 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1205 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.63 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.33 \mathrm{e}^{-3}$

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 4 A-\mathrm{H} 41 A \cdots \mathrm{O} 11 C^{\text {i }}$	0.89	1.91	2.787 (4)	168
$\mathrm{N} 4 A-\mathrm{H} 42 A \cdots \mathrm{O} 10 B^{\text {i }}$	0.89	2.30	2.938 (4)	128
$\mathrm{N} 4 A-\mathrm{H} 42 A \cdots \mathrm{O} 11 B^{\text {i }}$	0.89	2.37	3.086 (4)	137
$\mathrm{N} 4 A-\mathrm{H} 42 A \cdots \mathrm{O} 10 C^{\mathrm{ii}}$	0.89	2.63	3.130 (5)	116
$\mathrm{N} 4 A-\mathrm{H} 43 A \cdots \mathrm{O} 11 B^{\mathrm{ii}}$	0.89	1.98	2.839 (4)	162
$\mathrm{N} 7 A-\mathrm{H} 71 A \cdots \mathrm{O} 11 C^{\text {i }}$	0.89	1.85	2.703 (5)	161
$\mathrm{N} 7 A-\mathrm{H} 72 A \cdots \mathrm{O} 1 W^{\text {iii }}$	0.89	1.91	2.748 (4)	156
$\mathrm{N} 7 A-\mathrm{H} 73 A \cdots \mathrm{O} 42 \mathrm{~W}$	0.89	1.68	2.495 (11)	151
$\mathrm{N} 7 A-\mathrm{H} 73 A \cdots \mathrm{O} 41 W$	0.89	2.23	3.119 (8)	173
$\mathrm{N} 10 A-\mathrm{H} 11 A \cdots \mathrm{O} 10 F^{\text {i }}$	0.89	2.18	3.061 (4)	169
$\mathrm{N} 10 A-\mathrm{H} 11 A \cdots \mathrm{O} 11 F^{\text {i }}$	0.89	2.27	2.902 (4)	128
$\mathrm{N} 10 A-\mathrm{H} 12 A \cdots \mathrm{O} 10 C^{\text {i }}$	0.89	2.50	3.162 (5)	132
$\mathrm{N} 10 A-\mathrm{H} 12 A \cdots \mathrm{O} 11 B^{\mathrm{ii}}$	0.89	2.53	2.995 (4)	114
$\mathrm{N} 10 A-\mathrm{H} 13 A \cdots \mathrm{O} 11 D^{\mathrm{ii}}$	0.89	2.01	2.841 (4)	155
$\mathrm{N} 4 E-\mathrm{H} 41 E \cdots \mathrm{O} 2 W$	0.89	1.98	2.815 (5)	156
$\mathrm{N} 4 E-\mathrm{H} 42 E \cdots \mathrm{O} 10 D^{\mathrm{i}}$	0.89	1.98	2.849 (3)	164
$\mathrm{N} 4 E-\mathrm{H} 43 E \cdots \mathrm{O} 11 F^{\mathrm{iv}}$	0.89	2.30	2.968 (4)	132
$\mathrm{N} 4 E-\mathrm{H} 43 E \cdots \mathrm{O} 11 F^{\mathrm{ii}}$	0.89	2.48	3.017 (4)	119
$\mathrm{N} 7 E-\mathrm{H} 71 E \cdots \mathrm{O} 10 F^{\text {iv }}$	0.89	2.03	2.873 (4)	157
$\mathrm{N} 7 E-\mathrm{H} 72 E \cdots \mathrm{O} 10 D^{\mathrm{i}}$	0.89	1.98	2.838 (3)	162
$\mathrm{N} 7 E-\mathrm{H} 73 E \cdots \mathrm{O} 11 G^{\text {i }}$	0.89	1.90	2.742 (4)	158
$\mathrm{N} 10 E-\mathrm{H} 11 E \cdots \mathrm{O} 10 D^{\text {i }}$	0.89	2.01	2.859 (4)	160
$\mathrm{N} 10 E-\mathrm{H} 12 E \cdots \mathrm{O} 10 B^{\text {i }}$	0.89	1.88	2.734 (4)	159
$\mathrm{N} 10 E-\mathrm{H} 13 E \cdots \mathrm{O} 3 W^{\text {iii }}$	0.89	1.86	2.733 (5)	166
$\mathrm{O} 1 W-\mathrm{H} 11 \cdots \mathrm{O} 10 G^{\text {v }}$	0.81 (3)	1.92 (3)	2.722 (4)	171 (4)
$\mathrm{O} 1 W-\mathrm{H} 12 \cdots \mathrm{O} 11 G^{\mathrm{i}}$	0.81 (2)	2.02 (3)	2.805 (4)	166 (5)
$\mathrm{O} 2 W-\mathrm{H} 21 \cdots \mathrm{O} 10 C^{\text {ii }}$	0.80 (5)	2.03 (4)	2.625 (4)	129 (4)
$\mathrm{O} 2 W-\mathrm{H} 22 \cdots \mathrm{O} 10 B^{\text {i }}$	0.81 (3)	2.19 (2)	2.943 (5)	154 (5)
$\mathrm{O} 3 W-\mathrm{H} 31 \cdots \mathrm{O} 10 H$	0.82 (5)	2.03 (3)	2.812 (6)	177 (7)
$\mathrm{O} 3 W-\mathrm{H} 32 \cdots \mathrm{O} 11 H^{\text {iii }}$	0.82 (5)	2.03 (5)	2.821 (6)	163 (5)

All H atoms on the N atoms were initially located in difference syntheses but were then included in the refinement (along with all non-water H atoms) at calculated positions as riding atoms, with N -

Figure 1
The asymmetric unit of the title compound (I), showing the atomnumbering scheme and 50% probability displacement ellipsoids. For clarity, anions G and H have been moved and are not in a position that can be directly compared with the positions of the other ions.

H set at $0.89 \AA$ and $\mathrm{C}-\mathrm{H}$ set at $0.97\left(\mathrm{CH}_{2}\right)$ and $0.93 \AA(\mathrm{Ar}-\mathrm{H})$, and isotropic displacement parameters were set equal to $1.25 U_{\text {eq }}$ of the parent atom. All water H atoms, except those for $\mathrm{O} 4 W$, were introduced at calculated positions, and their positional parameters were refined with restrained $\mathrm{O}-\mathrm{H}$ distances of $0.811 \AA$ and $\mathrm{H} \cdots \mathrm{H}$ distances of $1.3 \AA$, and with $U_{\text {iso }}=1.25 U_{\text {eq }}(\mathrm{O})$. No H atoms were included for $\mathrm{O} 4 W$. Residual electron density of $0.63 \mathrm{e}^{\AA^{-3}}$ was located $1.71 \AA$ from O4W. The first four unassigned peaks in the difference map are found near $\mathrm{O} 2 W-\mathrm{O} 4 W$ and their respective H atoms but are too far from the O atoms to be considered as alternative H atoms.

Data collection: MolEN (Fair, 1990); cell refinement: MolEN; data reduction: Xtal3.2 (Hall et al., 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.

The author thanks the EPSRC's Chemical Database Service at Daresbury.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Hall, S. R., Flack, H. D. \& Stewart, J. M. (1992). Editors. Xtal3.2 Reference Manual. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1997). PLATON97. University of Utrecht, The Netherlands.

